Transport diffusivities of fluids in nanopores by non-equilibrium molecular dynamics simulation
نویسندگان
چکیده
منابع مشابه
Investigation of Melting by Molecular Dynamics Simulation
The melting of a 64 ion microcrystal of KCI was studied by means of a molecular dynamics computer simulation. We used a central pair interaction with an inverse power law repulsion. The thermodynamics, kinetic and structural properties such as melting temperature, latent heat, mean square displacement, diffusion constant, radial distribution function and bond angle distribution are calculated. ...
متن کاملNon-equilibrium Molecular Dynamics
Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and nonequilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws an...
متن کاملNon-equilibrium Molecular Dynamics Simulation of Dense Fluid Methane
We present a non-equilibrium molecular dynamics simulation of 125 methane molecules using a variant of the isokinetic “sllod” algorithm. The shear viscosity, pressure and internal energy of methane in a dense, supercritical fluid state (temperature 285.7 K and mass density 0.288 g/cm3) are calculated and the viscosity compared with experiment, with excellent agreement: the predicted shear visco...
متن کاملMolecular simulation of protein dynamics in nanopores. II. Diffusion.
A novel combination of discontinuous molecular dynamics and the Langevin equation, together with an intermediate-resolution model of proteins, is used to carry out long (several microsecond) simulations in order to study transport of proteins in nanopores. We simulated single-domain proteins with the alpha-helical native structure. Both attractive and repulsive interaction potentials between th...
متن کاملMolecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores
The integration of local heat sources with solid-state nanopores offers new means for controlling the transmembrane transport of charged biomacromolecules. In the case of electrophoretic transport of DNA, recent experimental studies revealed unexpected temperature dependences of the DNA capture rate, the DNA translocation velocity, and the ionic current blockades produced by the presence of DNA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Simulation
سال: 2012
ISSN: 0892-7022,1029-0435
DOI: 10.1080/08927022.2011.636813